More Than Just Just Growing Pains?
Common Pediatric and Adolescent Overuse Injuries and Management Strategies

SHEILA TAYLOR, DO
CHRISTIANA CARE SPORTS MEDICINE PHYSICIAN
ASSISTANT PROGRAM DIRECTOR, SPORTS MEDICINE FELLOWSHIP
TEAM PHYSICIAN, UNIVERSITY OF DELAWARE
I, Sheila Taylor, DO, have no financial conflicts of interest to disclose relevant to this activity.
Objectives

• Understand the effects of growth and development on injuries and rehabilitation in the young athlete

• Understand the pathophysiology and mechanism of common acute and overuse injuries in the young athlete

• Understand conservative treatment strategies for common injuries of the young athlete and when to refer for specialty management
Epidemiology

- 27 million children age 6 to 18 participate in team sports in the US
- 60 million participate in some form of sport
- 44 million participate in more than 1 sport

- Almost 50% of all injuries sustained in sport are overuse injuries
- Overuse injuries likely underestimated due to poor data collection
 - Overuse injuries are epidemic secondary to adult training regimens
 - Early sport specialization
Pediatric and Adolescent Overuse Injuries

• Need to understand the population
• Not just “little adults”
 • Factors that influence growth development and injury
 • Skeletal Maturity
 • Physiology
 • Strength
 • Psychological Maturity

• Knowing stage of development can help to narrow down differentials
Growth and Development in the Young Athlete

• Middle Childhood (6-9 years)
 • Maturation of throwing and kicking patterns
 • Entry level sports (soccer, baseball, softball)
 • Coed sports
 • Males and females can still compete with parity
 • Males slightly stronger
 • Females better balance
 • Running gait and speed are equal
Growth and Development in the Young Athlete

- Late Childhood to Early Adolescence (10-15yrs)
 - Onset of Puberty
 - “Growth Spurt”
 - Tanner Stage 3

- Differences emerge among the sexes
 - Anatomical changes
 - Peak height velocity for males 14 yrs vs. females 12 yrs
 - Skeletal maturity for males 16 yrs vs. females 14 yrs
 - Performance and sports abilities

- Skill acquisition and development are easiest in this stage
Early Adolescence

• Significance of puberty and peak height velocity
 • The Growth spurt
 • Bone growth can exceed soft tissue accommodation
 • Hamstrings
 • Hip flexors
 • Quads
 • Gastrocs
 • Decreased flexibility of muscles can impact growth centers
 • Decreased Coordination
Growth and Development in the Young Athlete

• Late Adolescence and Adulthood (16-20 years)
 • Increases in strength and size more gradual
 • “Late Bloomers” may continue to have late childhood issues/pathology
 • Eventual skeletal maturity
Overuse Injuries

- Repeated mechanical loading exceeds the remodeling capability of the structure under stress
- Cumulative trauma that alters tissue structure in the absence of inflammation
- Imbalance between loading and recovery over time
 - Two main mechanisms
 - Moderate intensity loading over extended periods when recovery time is not sufficient
 - Repeated high-intensity, short-duration loading even when recovery is planned and provided
Concerning Signs and Symptoms

- Post exercise pain that remains > 24 hours after exercise
- Joint effusion
- Localizable pain
- Disruption of ADLs or sleep due to pain
- Need for NSAIDs
Risk Factors for Overuse Injuries

• Growth is ultimate risk factor
• Children’s bony growth centers are weak and break down more frequently than ligaments or tendons
• School age athletes push to adapt to sports at the same time their bodies are stressed due to rapid growth
• Cartilage is at increased susceptibility to repetitive microtrauma
• Muscle-tendon imbalance during period of growth (bone grows faster than tendon)
Intrinsic and Extrinsic Factors

- Other Intrinsic Factors
 - Previous injury
 - Previous level of conditioning
 - Anatomic factors
 - Menstrual dysfunction
 - Psychologic and developmental factors – athlete specific

- Extrinsic Factors
 - Training progression
 - Equipment/footwear
 - Sport technique
 - Psychologic factors – adult and peer influences
Risk factors for injury (distant from outcome) - Injury mechanisms (proximal to outcome)

Internal risk factors:
- Age (maturation, aging)
- Gender
- Body composition (e.g., body weight, fat mass, BMD, anthropometry)
- Health (e.g., history of previous injury, joint instability)
- Physical fitness (e.g., muscle strength/power, maximal O_2 uptake, joint ROM)
- Anatomy (e.g., alignment, intercondylar notch width)
- Skill level (e.g., sport, specific technique, postural stability)

Predisposed athlete → Susceptible athlete → INJURY

Exposure to external risk factors:
- Human factors (e.g., teammates, opponents, referee)
- Protective equipment (e.g., helmet, shin guards)
- Sports equipment (e.g., skis)
- Environment (e.g., weather, snow and ice conditions, floor and turf type, maintenance)

Inciting event:
- Joint motion (e.g., kinematics, joint forces and moments)
- Playing situation (e.g., skill performed)
- Training programme
- Match schedule
Other Risk Factors

• Early Sport Specialization
 • Year long single sport play
 • School leagues, club leagues, travel leagues
 • Performance schools and private coaches
• Unrealistic parental expectations
• Old school thought process to play through pain as necessary
 • “No pain no gain”
Common Overuse Injuries

• Shoulder
 • Little leaguers shoulder
• Wrist
 • Distal Radius Stress Syndrome
• Elbow
 • Little leaguer’s elbow
 • Panner’s disease
• Hip
 • Iliac crest, ASIS, AIIS, Greater trochanter, Lesser trochanter, ischial tuberosity
• Knee
 • Osgood Schlatter Disease
 • Siding Larsen Johannsen Disease
 • Osteochondritis Desiccans
• Ankles
 • Severs disease, islein disease
 • Kohlers disease, Frieberg disease
WRIST
Distal Radial Stress Syndrome

• Chronic overloading of the distal radial physis
 • When wrist used as weight bearing joint
• Occurs most commonly in gymnasts
 • “Gymnast’s Wrist”
 • Estimates as much as 25% of non-elite gymnasts
 • Also in tumblers and cheerleaders
• Complications: early closure of radial physis resulting in long ulna = positive ulnar variance
Distal Radial Stress Syndrome

• History
 • Insidious onset of radial sided wrist pain
 • Chronic mild swelling
 • Decreased ROM in extension

• Exam
 • Mild radiocarpal synovitis and soft tissue swelling
 • Decreased active and passive ROM
 • Tenderness of distal radius

• XRAYS – sclerosis and widening of the distal radial growth plate with ill defined border
Distal Radial Stress Syndrome

- Management
 - Rest
 - Immobilization
 - Usually requires prolonged rest from activity (8-12) months
 - PT for forearm, shoulder, core
 - Operative management with physeal closures
 - Resection of physeal bridge
ELBOW
Little leaguer’s Elbow

- Global term to describe injuries to the medial side of the elbow
- Most common overuse injury in throwers
 - Epicondyle apophysitis, epicondyle avulsion fractures, and ulnar collateral ligament injuries
 - High valgus torque of throwing generates tensile and shearing stresses at the medial elbow
 - Cartilage is vulnerable to the repetitive microtrauma of throwing
 - Occurs in 8 to 15 yos
Little Leaguer’s Elbow

• Risk Factors
 • > 80 pitches per game
 • More than 8 months of competitive pitching per year
 • Fastball speed > 85mph
 • Continued pitching despite arm fatigue/pain
 • Participating in pitching showcases
Little Leaguer’s Elbow

- **History**
 - Elbow pain in throwing arm
 - Decreased throwing velocity, accuracy, distance

- **Physical**
 - Medial elbow tenderness
 - Pain with valgus stress
 - Instability with valgus stress

- **XRAYS** – physeal widening, avulsion or fragmentation of the medial epicondyle
Little Leaguer’s Elbow
Little Leaguer’s Elbow

• Management
 • Rest from pitching
 • Activity modification
 • PT for shoulder ROM, shoulder girdle strengthening, core strengthening

• Surgical Repair
 • ORIF for medial epicondyle avulsions
 • UCL reconstruction
Little Leaguer’s Elbow

- Prevention - Pitch Count Limits
 - **13-16** – 95 pitches per day
 - **11-12** – 85 pitches per day
 - **9-10** – 75 pitches per day
 - **7-8** – 50 pitches per day

<table>
<thead>
<tr>
<th>Age 7-16</th>
<th>Age 17-18</th>
<th>Required # of Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>66+</td>
<td>76+</td>
<td>4 calendar days</td>
</tr>
<tr>
<td>51-65</td>
<td>61-75</td>
<td>3 calendar days</td>
</tr>
<tr>
<td>36-50</td>
<td>46-60</td>
<td>2 calendar days</td>
</tr>
<tr>
<td>21-35</td>
<td>31-45</td>
<td>1 calendar days</td>
</tr>
<tr>
<td>1-20</td>
<td>1-30</td>
<td>0 calendar days</td>
</tr>
</tbody>
</table>

Source: Little League Baseball, www.littleleague.org
HIP
Iliac Crest Apophysitis

- Fusion to the crest occurs at an average age of 16 in boys and 14 in girls, with ossification beginning laterally and anteriorly and advancing posteriorly
 - it more commonly affects the anterior crest
 - Frequently seen in long-distance runners and gymnasts
 - Also been reported in wrestlers, dancers, lacrosse players, and football players.
A. Anterior Pelvic View

B. Posterior Pelvic View
Iliac Crest Apophysitis

• **History**
 - 2 to 8 weeks of gradual activity-related pain.
 - Pain with coughing or sneezing, due to muscle traction at the apophysis.

• **Exam**
 - Tenderness over the iliac crest
 - Tightness in the iliotibial band, hip flexor, or rectus femoris.
 - With the patient lying on the unaffected side, resisted hip abduction will produce pain at the iliac crest.

• **XRAYS** - may show widening of the affected portion of the iliac apophysis or discontinuity between the anterior one third of the apophysis and the posterior two thirds
Iliac Crest Apophysitis Management

• Restricted weightbearing
• limited activities
• Rest for 3-4 weeks
 • Complete relief of symptoms can result with just activity modification and rest
• Local cortisone injections shown to have no benefit
• When pain-free, the patient can start a lateral abdominal and hip abductor stretching and strengthening rehabilitation program
• If sprinting or running is allowed too early, there is a risk of anterosuperior iliac spine avulsion, which may require repair
Ischial Apophysis

- The apophysis appears between the ages of 13 and 15 and fuses to the pelvis between 16 and 25.
- Eccentric contractions of the hamstrings with the hip flexed and the knee extended can result in apophysitis or avulsion fractures.
- Avulsion fractures of the ischial tuberosity are the most common site of pelvic avulsions in athletes.
 - Soccer and female gymnasts at highest risk.
Ischial Apophyseal Injuries

- **History**
 - Audible “POP” is often heard during an acute injury
 - Athletes hold their hip in an extended position, allowing minimal hamstrings tension

- **Exam**
 - Ecchymosis, swelling, tenderness, and a palpable lump at the ischium are often present

- **XRAYS** - will show a displaced ischial tuberosity

- **Management**
 - Little data regarding treatment decisions between an operative and nonoperative approach for ischial avulsions
 - Surgical treatment may be needed if the displacement is greater than 1 cm or if a painful fibrous nonunion occurs
KNEE
Osgood Schlatter Disease

- Tibial Tubercle Apophysitis
 - Seen in running and jumping athletes during periods of rapid growth
- Most common overuse injury seen in young athletes
 - Boys 10 -15
 - Girls 8-12
 - It is bilateral in 25-50% of patients
Osgood Schlatter’s Disease

- Clinical Features
 - History
 - Young athlete complains of pain/painful enlargement of the tibial tuberosity
 - Pain worse with activity, especially run/jump
 - Exam
 - Tender tibial tuberosity
 - Tight quads +/- hamstrings
 - may be related to lower limb malalignments: pronated feet, genu valgum, patella alta, and torsional abnormalities
Osgood Schlatter’s Disease

- Use of Imaging
 - Use in severe or persistent cases to rule out other problems
 - Not used to make the diagnosis in most cases
 - May show fragmentation of the anterior tibial tuberosity
Osgood Schlatter's Disease

• Treatment
 • Relative Rest
 • Cross training that is non-painful
 • Ice
 • NSAIDs
 • Cho-pat strapping
 • Hamstring/quad stretching/strengthening
 • Padding to prevent pressure on the tibial tuberosity are also useful
 • Spontaneously resolves once the physis closes
 • In rare cases, surgical excision of the bone fragment or free cartilaginous in skeletally mature patients who remain symptomatic despite conservative measures.
Sinding-Larsen-Johansson Disease

- Repetitive traction injury at Inferior pole of the patella
 - Lower pole of the patella still partly cartilaginous in adolescents
- Seen in adolescents between ages 10 and 14
Sinding-Larsen-Johansson Disease

- History
 - Insidious onset of pain at the inferior patella

- Exam
 - Tenderness of inferior patella
 - Swelling
 - Pain with knee extension
 - Decreased flexibility of quads, gastrocs, hamstrings

- XRAYs- usually normal, may show spurring or fragmentation at inferior pole of patella
Sinding-Larsen-Johansson Disease

• Management
 • Rest
 • Activity modification
 • Brief immobilization
 • Physical therapy
FOOT
Islein’s Disease

• Apophysitis of the 5th metatarsal
 • Usually seen in girls age 10 and boys age 12, fuses in 2 years
 • Peroneus brevis and peroneus tertius insert proximally on the fifth metatarsal
• Caused by repetitive microtrauma
 • the pull of the peroneus brevis on the weak apophyseal cartilage causes traction apophysitis during rapid growth in adolescents.
• Macrotrauma
 • Inversion injuries to the foot
Islein’s

- History
 - Lateral midfoot pain during weightbearing
 - running, jumping, cutting, and inversion bothersome
 - Pressure on the 5th metatarsal tuberosity from shoe bothersome

- Exam
 - Tenderness at the proximal fifth metatarsal insertion of the peroneus brevis tendon
 - Soft tissue edema, hyperkeratosis, or mild erythema
 - Resisted eversion and extreme plantarflexion and dorsiflexion elicit pain

- XRAYS - best seen with an oblique view
 - small fleck of bone, slightly oblique to the long axis of the metatarsal shaft along the plantar-lateral aspect of the tuberosity.
 - Enlargement of the apophysis, fragmentation, or widening of the chondro-osseous junction may also be seen
Islein’s Treatment

- Symptoms generally resolve when fusion of the apophysis to the metaphysis occurs
- Activity modification
- Weight bearing as tolerated with/without crutches
- Nonsteroidal anti-inflammatories
- Stretching and strengthening exercises
- Immobilization
 - Short leg cast or boot for 2-4 weeks
 - Complications rare, children usually self limit
 - One case in literature of nonunion of apophysis
 - Treated with surgical excision of the fragment
Sever’s Disease

- Apophysitis of the os calcis
 - appears radiographically at 4 to 7 years in girls and 4 to 10 in boys
 - fuses at an average age of 16 years
 - Male athletes are affected more often (75%)
 - 61% of cases are bilateral
Sever’s Disease

- **History**
 - Heel pain associated with athletic activity

- **Exam**
 - Posterior calcaneal tenderness with mediolateral compression anterior to the Achilles tendon insertion
 - Ankle dorsiflexion may aggravate the pain
 - Decreased heel cord flexibility
 - Forefoot pronation with gait

- **XRAYS** - apophysis may appear thickened and fragmented reflective of the mechanical demands
 - Growth disturbances and bone density changes are not typical
Sever’s Management

- Activity modification- discontinuation of running sports
- Gastrocnemius-soleus stretching, dorsiflexion strengthening
- heel cups, soft orthotics, heel wedges, or a rubber heel lift
 - Stretching exercises and orthotics may be slow to resolve symptoms because young athletes are often noncompliant
- Immobilization in a short leg cast or boot quickest generally in about 2-4 weeks
Prevention

• Limiting weekly and yearly participation time, sport-specific repetitive movements (eg, pitching limits), and scheduled rest periods are recommended.
• Careful monitoring of training workload during the adolescent growth spurt is recommended, as injury risk seems to be greater during this phase.
• Preseason conditioning programs can reduce injury rates in young athletes.
• To reduce the likelihood of burnout, an emphasis should be placed on skill development more than competition and winning.
Take Away Points

• Screen for early sport specialization and overtraining during your well child checks and sport physicals
 • Identify children at risk
 • Educate parents
• Know the common overuse injuries that affect different age groups
• Work up kids complaining of pain and prescribe rest from their sport
References